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1 Introduction

1.1 Purpose of this document

SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) is an object-oriented C++
class library developed in the Center for Applied Scientific Computing (CASC) at Lawrence Livermore
National Laboratory (LLNL). It provides extensive support for development of parallel structured
adaptive mesh refinement (SAMR) applications. This document describes the organization and design of
the SAMRAI library. The primary intent of this material is to help SAMRAI users and developers
understand how SAMRAI works and how it may be used in (SAMR) application development.

1.2 Disclaimer and auspices statements

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government, Lawrence Livermore National Security, LLC, nor any
of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product

endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
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2 SAMRAI and your application

Before getting into a detailed discussion of SAMRAI it is worth discussing some misperceptions about
the library that the SAMRAI development team has encountered in discussions with potential users.
One frequently held notion is that SAMRAI “owns” the application data. This most likely has arisen
because SAMRAI does provide a set of PatchData types and our examples make use of them. However,
there is no requirement that an application must use these classes. The class PatchData is an abstract
base class that exists to provide an abstract interface. Application developers are free to implement
their own data classes that derive from PatchData and implement that class’ abstract interface. As an
application developer you are not in any way bound to use SAMRALI’s data classes unless you wish to.

III

Another misconception that we have heard is that SAMRAI “controls” the application. This notion may
have come about due to the existence of the “algs” and “appu” components in the library. These
components add things like time integrators, level integrators, specific communication transactions,

boundary data treatments, etc. Theses components exist for 2 reasons:

1. To complete implementations of SAMRAI abstract base classes so that the SAMRAI library can
create complete tests
So that users have examples from which they may pattern their own implementations
They work and may be used directly if they suit your application

Again, there is no requirement that an application developer must use one of these time integrators or
something else from the algs and appu components unless he wants to.
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3 SAMR and SAMRAI

3.1 Structured Adaptive Mesh Refinement (SAMR)

Many science and engineering simulation problems exhibit solutions with localized features, such as
large gradients, separated by relatively large regions in which the solution is smooth or varies little. A
fine computational mesh (i.e., the discrete time-space domain on which the equations are
approximated) is often required to resolve certain local features while a coarser mesh suffices
elsewhere. Since mesh resolution determines the accuracy and cost of a computation, using fine mesh
everywhere may be inefficient or worse, unacceptably expensive. In many problems, the location and
resolution of fine mesh required for a desired level of accuracy may not be known a priori. Adaptive
mesh refinement (AMR) is a computational technique used to focus mesh resolution where it is needed
dynamically. When applied properly, AMR is a powerful tool that can adjust mesh resolution to resolve
local features with sufficient accuracy without incurring the cost of a globally fine mesh.

Structured AMR (SAMR) refers to the use of structured mesh components (i.e., logically-rectangular
mesh blocks) in the implementation of an adaptive mesh. SAMR codes typically adopt one of two
implementation strategies: patch-based and tree-based. The approaches differ in data structures and
algorithms used to manage and adapt the mesh. SAMRAI utilizes the patch-based approach.

s Fine local
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Figure 1. A simple two-dimensional, three-level structured mesh hierarchy. The coarsest level covers the entire
computational domain. Each finer level is nested within the next coarser level. Refined cells on each level are shown in red.




- SAMRAI Concepts and Software Design

In an SAMR application, the computational mesh consists of a hierarchy of nested levels of mesh
refinement; see Figure 1. The coarsest level covers the entire computational problem domain. Each
successively finer level in the hierarchy is contained within the interior of the next coarser level. A level
represents a “uniform” degree of mesh resolution meaning that a finer level is related to its next
coarsest level by a refinement ratio (typically, an integer vector). This ratio defines the number of finer
level mesh zones contained within a zone on the coarser level. A level is partitioned into a disjoint union
box regions, each representing a logically rectangular extent (i.e., multidimensional interval) in mesh
index space. A patch is a container that holds the simulation data on a portion of mesh defined by a box.
During mesh adaptation, cells on a level are selected (or “tagged”) for refinement using some error
estimation or feature detection criteria that is usually specific to an application. Tagged cells are covered
by a disjoint union of boxes which form a new finer mesh level in the hierarchy.

Similar to non-adaptive, parallel block-structured mesh computations, SAMR algorithms are organized
into numerical routines that operate on data on spatially-distributed box regions interleaved with

Ill

communication operations that pass data between these regions; for example, to fill “ghost’” data at box
boundaries. In addition to communication between boxes on a single level, SAMR requires inter-level
data communication to refine and coarsen simulation data between levels in the mesh hierarchy. Such

inter-level data communication depends on the numerical approximations employed in an application.

3.2 Whatis SAMRAI?

SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) is an object-oriented C++
class library developed in the Center for Applied Scientific Computing (CASC) at Lawrence Livermore
National Laboratory (LLNL). It provides extensive support for parallel SAMR application development
and it is designed to serve as a framework of software components that can be shared across a diverse
range of SAMR applications. For example, SAMRAI frees application developers from most low-level
programming details related to SAMR mesh and data management and communication. In addition, it is
fairly straightforward to use SAMRAI to evolve an existing serial code that solves problems on a block-
structured mesh to work in parallel with or without adaptive meshing.

Beyond core SAMR mesh and data management, the library provides some computational algorithms
that are common in SAMR applications. Classes that perform time integration and solve Poisson
problems, for example, which have been developed for specific applications built on SAMRAI, are
included in the library. Often, such algorithms are designed for specialization, using techniques such as
Strategy and Template Method design patterns, for new applications.

It is important to emphasize that SAMRAI does not take away user control over numerical methods
employed in applications. Developers are entirely responsible for the implementation of numerical
routines they use. Generally, the pieces of SAMRAI are decoupled from each other and from
application-specific operations to provide flexibility and promote software reuse. For example, SAMRAI’s
parallel data communication infrastructure is independent of the actual data being communicated so
that users may integrate their own data structures into a parallel SAMR environment by providing only a
handful of methods defined by the SAMRAI mesh data API.

9
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3.3 SAMRAI library organization

The SAMRAI library is comprised of a collection of software “packages”. Strict dependency relationships
are maintained among these packages making it easier for users to focus only on the portions of the
library that they require for development. The following list provides a brief description of each package
with the four-letter SAMRAI namespace identifier in parentheses. The ordering in this list indicates inter-
package dependencies; classes in package 1 depend only on classes in package 1, classes in package 2

depend only on classes in packages 1 and 2, etc.

1. Toolbox (tbox). Basic utility classes used in the library and in application development
including: MPI wrappers and utilities; stream classes for interprocess communication; tools for
managing input and restart files; and event logging, tracing, and timing.

2. Hierarchy (hier). Classes used to define and operate on mesh index spaces, to describe SAMR
patch hierarchy structure, and base class interfaces for variables and simulation data.

3. Transfer (xfer). General support for interpatch data communication on a level and between
levels in an SAMR patch hierarchy.

4. Patch Data (pdat). Various array-based patch data types for different mesh centerings such as
cell, node, face, edge, etc. as well as support for sparse data representations.

5. Math Operations (math). Basic arithmetic and other operations, such as dot products and
norms, that are needed for vector kernels for all array-based patch data types in SAMRAI.

6. Meshing (mesh). Algorithms and interfaces for creating and adaptive regridding of levels in an
SAMR patch hierarchy.

7. Algorithms (algs). Classes used to construct solution algorithms for certain types of PDE
problems such as explicit time integration with time subcycling on finer levels.

8. Solvers (solv). Classes useful for applying linear and nonlinear solver methods in SAMR
including: assembling arbitrary collections of patch data into solution vectors, interfaces and
wrapper classes for PETSc, Sundials and hypre, as well as an FAC Poisson solver.

9. Mesh geometry (geom.). Support for mesh coordinate systems and associated interlevel
interpolation and coarsening operators.

10. Application Utilities (appu). Simple utilities for setting physical boundary conditions and
generating Visit data files that are useful for application development.

10
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4 SAMRAI application development

4.1 Basic structure of a SAMRAI application

Since SAMRAI is a class library, it is the responsibility of an application developer to implement the main
program that executes a simulation. A typical SAMRAI application employs the same basic concepts
found in most scientific computing applications. A common main program structure contains the
following operations: initialize the simulation environment (MPl and SAMRAI), read input file data,
compose objects from the library with application-specific entities to form a simulation algorithm,
execute simulation control logic including writing/reading restart files and writing visualization data,
clean up memory and exit.

4.2 An example main program for a SAMRAI application

In this section, we show an abridged listing of the main program that appears in the SAMRAI linear
advection example code that is part of the library. This example illustrates in some detail the discussion
in the preceding section. Details describing parts of the code enumerated by the red comments are
discussed below. The associations among the objects composed by this construction pattern are shown
in Figure (add figure? Would this help?).

//
// 0: Header file inclusions

//

int main( int argc, char* argvl[])

{
// 1: Initialize MPI and SAMRAI
tbox::SAMRAI MPI::init (&argc, &argv);
tbox::SAMRAIManager::initialize () ;

// 2: Startup SAMRATI
tbox::SAMRAIManager: :startup() ;

// 3: Create input database and parse input file
boost::shared ptr< tbox::InputDatabase > input db(

new tbox::InputDatabase ("input db") );
tbox::InputManager: :getManager () ->parselnputFile (filename, input db);

// 4: Access “Main” input database and create problem dimension
boost::shared ptr<tbox::Database> main db (input db->getDatabase ("Main"));
const tbox::Dimension dim(

static_cast<unsigned short>( main db->getInteger ("dim")) );

11
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// 5: Create and compose main algorithmic objects for the simulation

// B5a: Grid geometry and patch hierarchy
boost::shared ptr<geom::CartesianGridGeometry> grid geometry (
new geom: :CartesianGridGeometry (
dim,
"CartesianGeometry",
input db->getDatabase ("CartesianGeometry")) );

boost::shared ptr<hier::PatchHierarchy> patch hierarchy (
new hier::PatchHierarchy (
"PatchHierarchy",
grid geometry,
input db->getDatabase ("PatchHierarchy")) );

// 5b: HyperbolicPatchStrategy object with Linear advection routines
LinAdv* linear advection model = new LinAdv (

"LinAdv",

dim,

input db->getDatabase ("LinAdv"),

grid geometry );

// 5c: Level integrator for hyperbolic equations
boost::shared ptr<algs::HyperbolicLevellntegrator> hyp level integrator(
new algs::HyperbolicLevelIntegrator (
"HyperbolicLevelIntegrator",
input db->getDatabase ("HyperbolicLevelIntegrator"),
linear advection model,

) )

// 5d: Cell tagging algorithm
boost::shared ptr<mesh::StandardTagAndInitialize> error detector
new mesh::StandardTagAndInitialize(
dim,
"StandardTagAndInitialize",
hyp level integrator.get(),
input db->getDatabase ("StandardTagAndInitialize™")) );

// 5e: Cell clustering, load balancing, and gridding algorithm
boost::shared ptr<mesh::BergerRigoutsos> box generator (
new mesh: :BergerRigoutsos (
dim,
input db->getDatabaseWithDefault (
"BergerRigoutsos",
boost::shared ptr<tbox::Database>())) )’

boost::shared ptr<mesh::TreeLoadBalancer> load balancer (
new mesh::TreelLoadBalancer (
dim,
"LoadBalancer",
input db->getDatabase ("LoadBalancer")) );

boost::shared ptr<mesh::GriddingAlgorithm> gridding algorithm/(
new mesh::GriddingAlgorithm(
patch hierarchy,
"GriddingAlgorithm",

12
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input db->getDatabase ("GriddingAlgorithm"),
error detector,

box generator,

load balancer) );

// 5f: Hierarchy time integration algorithm
boost::shared ptr<algs::TimeRefinementIntegrator> time integrator (
new algs::TimeRefinementIntegrator (
"TimeRefinementIntegrator",
input db->getDatabase ("TimeRefinementIntegrator"),
patch hierarchy,
hyp level integrator,
gridding_algorithm));

// 6: Initialize hierarchy and get initial time step and
// simulation time info from integrator
double dt now = time integrator->initializeHierarchy();

double loop time = time integrator->getIntegratorTime () ;
double loop time end = time integrator->getEndTime () ;

// T7: 1Iterate over time steps until done
while ( (loop time < loop time end) &&
time integrator->stepsRemaining() ) {

// Ta: Advance solution to the new time
double dt new = time integrator->advanceHierarchy(dt now);

loop time += dt now;
dt now = dt new;

// Tb: Write restart and viz files if desired

}

// 8: Destroy objects used in simulation
time integrator.reset();

gridding algorithm.reset();

load balancer.reset();

box generator.reset();

error detector.reset();

hyp level integrator.reset();

if (linear advection model) delete linear advection model;
patch hierarchy.reset();

grid geometry.reset();

input db.reset();

main db.reset();

13
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// 9: Shutdown SAMRAI
tbox::SAMRAIManager: :shutdown () ;

// 10: Finalize SAMRAI and MPI environments
tbox::SAMRAIManager::finalize();
tbox::SAMRAI MPI::finalize();

return O;

A summary of the major object associations created by the calls to the object constructors is shown in

Figure 2

class CartesianGridGeometry : public BaseGridGeometry

Holds pointer to StandardTagAndlnitStrategy,
which defined interface for tagging cells and
initializing data on a new level

T LinAdv class is application-specifiﬁ

class StandardTagAndinitialize : public TagAndInitializeStrategy

class LinAdv : public HyperbolicPatchStrategy

Holds pointer to HyperbolicPatchStrategy,
which defines interface for patch operations

class TreeLoadBalancer : public LoadBalanceStrategy

class HyperbolicLevellntegrator : public TimeRefinementLevelStrategy, public StandardTagAndinitStrategy

class PatchHierarchy

|

class GriddingAlgorithm

class BergerRigoutsos : public BoxGeneratorStrategy

class TimeRefinementintegrator

- . Holds pointer to TimeRefinementLevelStrategy,
Holds pointers to strategy base classes that define —----- 108 pointert S %
) . P _ Iwhich defines interface for level operations
interfaces for tagging and level initialization,

cell clustering, and load balancing

Figure 2: Major object associations created by constructor calls in linear advection example.

Next, we elaborate on some details of this code. First, note that each SAMRAI class name is qualified
with the name of the SAMRAI package in which it resides. The numbers in the following list correspond

to the numbered comments in the code above.

0. Before the main routine, we include header files containing definitions of the SAMRAI classes
and other entities used in the routine

1. Initialize the MPI and SAMRAI environments. Note that MPI must be initialized first. The
SAMRAIManager::initialize( ) method initializes SAMRAI assertion handlers, 1/0, and other

14
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SAMRAI internals. It must be called before any SAMRAI objects are used and must be called
exactly once.

2. Startup certain SAMRAI classes by calling SAMRAIManager::startup( ). This method, and the
corresponding SAMRAIManager::shutdown( ) method, may be called multiple times to execute
multiple SAMRAI problems successively within a single program execution.

3. Create an input database and parse the contents of an input file into that database. Typically,
the name of the input file is given as a command line argument. Such details are omitted here.

4. Many SAMRAI objects require a Dimension object when constructed. Usually, the spatial
problem dimension is specified as an integral value in the input file and this is used to create the
Dimension object. This is illustrated here.

5. Build a complete SAMRAI simulation algorithm by creating and composing its constituent parts.
A common SAMRAI pattern for this is to pass objects representing parts of an algorithm into
other objects that represent a larger algorithm. Note that each of these classes also takes the
following two arguments: a name string identifier (used to distinguish multiple objects of the
same type in error/warning messages, for restart, etc.), an input database (representing the
portion of the input file holding data used to initialize the object). This constructor argument
pattern is common in SAMRAL.

a. Create grid geometry and patch hierarchy objects. The patch hierarchy object takes the
grid geometry object, which defines the mesh index space for the problem and
coordinate system; here we employ a Cartesian mesh. Note that the grid geometry also
takes the Dimension object that defines the spatial dimension of the mesh.

b. Create the LinAdv object, which defines the variables used in the problem and provides
the numerical routines that operate on those variables on each patch. In this example,
this is the only object that is specific to the simulation problem we will run.

c. Create a HyperbolicLevellntegrator object that drives the patch integration routines
defined by the LinAdv object.

d. Create a StandardTagAndInitialize object that coordinates the routines that tag cells for
refinement and initialize data on new patches with the adaptive meshing operations. It
takes the level integrator object.

e. Build the adaptive gridding algorithm by composing the StandardTagAndInitialize,
BergerRigoutsos (cell clustering), and TreeLoadBalancer objects. These objects each
define a piece of the adaptive meshing process and are passed to the GriddingAlgorithm
class constructor, which coordinates the operations provided by each part.

f. Lastly, construct the TimeRefinementintegrator object that orchestrates integration of
levels in the hierarchy with adaptive meshing operations. Its constructor takes the
patch hierarchy, level integrator, and gridding algorithm objects.

6. At this point, we have composed the entire structure of the simulation components we need to
run our problem. We start by telling the integrator to build the initial patch hierarchy
configuration by calling its initializeHierarchy( ) method. Using all the algorithmic pieces we have
provided, the integrator builds the coarsest hierarchy level and initializes data on it. Then, it tags
cells for refinement (using routines provided by the LinAdv object) and builds the next finer level
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based on those tags. This process repeats until some maximum number of levels is created or
no more cells are tagged for refinement. Finally, we are ready to begin the time integration
process. Note that the time integrator owns the simulation time information.
7. The time integration process is comprised of a loop over time increments in which we:
a. Advance the solution to the new time, and
b. Write out visualization and restart files, as needed.
8. When we have reached the final simulation time and have exited the time step loop, we begin
the memory cleanup process. The first part of this is to destroy the objects we created earlier.
9. Shutdown SAMRAI classes by calling SAMRAIManager::shutdown( ). This method may be
followed by a call to SAMRAIManager::startup( ) to run another problem in the same program.
10. Finalize the SAMRAI and MPI environments. Note that MPI must be finalized last.
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5 Index spaces and boxes

A central concept in SAMR is the index space, which defines the structure of the computational mesh for
a simulation problem. Nearly all operations that interact with an SAMR mesh hierarchy and simulation
data on it involve index spaces. As mentioned in Section 3.1, a box is the central concept used to
describe the extent of logical coordinates on a portion of an SAMR mesh.

In SAMRAI, the computational domain on each hierarchy level is represented as a collection of boxes,
each of which defines a multidimensional interval in the mesh index space associated with that level.
SAMRAI employs the convention that all boxes describing an SAMR mesh hierarchy are cell-centered.
That is, a box is defined by two cell indices, lower and upper, which define the bounds of the
multidimensional interval in index space covered by the box. Boxes on different levels are related by a
refinement ratio that describes how the index space on one level is a coarsening or refinement of the
mesh index space on another level.

5.1 Illustration of key index space concepts

Figure 3 illustrates essential index space concepts needed to describe an SAMR mesh using a simple
two-dimensional, three level example. The coarsest level is represented by a 5-by-4 mesh, which is
defined by the problem index space for that level. A box with lower and upper cell indices (0, 0) and (4,
3), respectively, defines this mesh (cell coordinate numbers 0 — 4 and 0 — 3 are shown in black along the
bottom and left). SAMRAI uses the notation [(0,0),(4,3)] to describe such a box. Patches on the coarsest
level always cover the entire problem domain, and so we use the same box to define a patch covering
the level in this case. The next finer (intermediate) level relates to the coarsest level by a refinement
ratio of (4, 2). That is, eight intermediate level cells (4-by-2) cover each refined coarse level cell. The
extent of the problem index space for the intermediate level is described by a box with lower and upper
cell indices (0, 0) and (19, 7), respectively (cell coordinates are shown in blue along the bottom and
right). A single patch, defined by the box [(8, 0),(19, 5)] is shown. Note that this patch represents a
refinement of the box [(2, 0),(4, 2)] on the coarsest level. The finest level relates to the intermediate
level by a refinement ratio of (1, 2); i.e., two finest level cells (1-by-2) cover each refined intermediate
level cell. Thus, the extent of the problem index space for the finest level is [(0, 0),(19, 15)] (cell
coordinates are shown in red along the bottom and right). Lastly, one patch, defined by the box [(12,
4),(15, 7)], is shown on the finest level. This patch represents a refinement of the box [(12, 2),(15, 3)] on
the intermediate level.
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Figure 3. This simple example shows a two-dimensional, three level mesh to illustrate the main concepts used to describe an
SAMR patch hierarchy. The (cell-centered) problem index space for each level defines the maximum logical extent of the
computational mesh on the level. Index spaces for two different levels are related by a refinement ratio. A patch is defined
by a box that covers some multidimensional interval of the index space on the level on which the patch resides.

5.2 Key classes and their associations

The notion of a box is a central concept used to define mesh index spaces associated with SAMR patch
hierarchies and operations on them. Figure 4 show basic associations among key SAMRAI classes: Box,
Index, IntVector, and Dimension. A Box object represents a multi-dimensional interval in index space
and is defined by its lower and upper Index members. It provides access to these indices as well as many
simple box calculus operations, such as growing/shrinking, shifting, coarsening/refining, intersection
with another box, etc. An Index object represents a single point in some index space. The Index class is
a subclass of IntVector, which implements an integer vector and provides a variety of arithmetic and
other operations on such vectors. The dimensionality of Index and IntVector objects is set when they
are constructed by providing a Dimension object. A Dimension object holds a scalar integral type that
defines the dimensionality.
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class IntVector class Dimension

Dimension d_dim; 1 unsigned short d_dim ;
int d_vector[ ];

int &operator [ ]0 unsigned short getValue()

class Index : public IntVector class Box

Index d_lo;
Index d_hi;

Index &lower()
Index &upper()

Figure 4. The key classes used to represent index space concepts are: Box, Index, IntVector, and Dimension.

5.3 Simple Index and Box usage example

This section illustrates in code some basic usage of Index and Box types by showing various operations
to create the Boxes describing the patches discussed in Section 5.1. It is important to note that there
are many ways to generate the boxes “box_0”, “box_1", and “box_2" in this example. The intent here is
to illustrate some basic Index, IntVector, and Box manipulations.

#include “SAMRAI/tbox/Dimension.h”
#include “SAMRAI/hier/BlockId.h”
#include “SAMRAI/hier/Index.h”
#include “SAMRAI/hier/Box.h”

const tbox::Dimension dim( 2 ); // Define index space dimension
hier::BloxkId blockid( 0 ); // Define block id

// Create level zero box by specifying its lower, upper indices.
Index lo( 0, 0 );

Index hi( 4, 3 );

Box box 0( lo, hi, blockid );

// Create level one box as a refinement of a level zero box.

lo( 0 ) = 2;

hi( 1) = 2;

Box box 1( lo, hi, blockid );

IntVector ratio( dim ); ratio( 0 ) = 4; ratio( 1 ) = 2;

box 1l.refine( ratio );
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// Create level two box by making a copy of level one box, shrinking it, and
// refining the result.

Box box 2( box 1 );

IntVector shrink( dim, ); shrink( O ) = -4; shrink( 1 ) = -2;

box 2.grow( shrink );

ratio( 0 ) = 1;

box 2.refine( ratio );

In this example code, we first include the SAMRAI header files needed to make the code work. Then, we
define an object representing our two-dimensional index space and a Blockld. The Dimension object is
required to create IntVector objects. The Blockld is not germane to our discussion here and is only
shown for completeness (each Box must be constructed with a block id); the concept of mesh blocks will

be introduced in Section 8.

To create “box_0”, the box defining the patch on the coarsest level, we construct its lower and upper
indices and pass these to the Box constructor. We generate the intermediate level patch box, “box_1",
by refining a box in the index space of the coarsest level. First, we modify the existing lower and upper
Index objects and use these to create the box [(2, 0),(4, 2)]. Second, we create the IntVector object (4,
2), which describes the refinement ratio between the coarsest and intermediate levels. Third, we refine
the box, which yields the box [(8, 0),(19, 5)] on the intermediate level. Lastly, we create the finest level
box. First, we make a copy of the intermediate level box and shrink it by 4 cells in the first coordinate
direction and 2 cells in the second direction by calling the box grow() method passing the IntVector (-4, -
2). This yields the box [(12,2),(15,3)]. Then, we adjust the refinement ratio vector so that it represents
the refinement ratio between the intermediate and fines levels (i.e., (1, 2)), and refine the box to give
the box [(12, 4),(15, 7)].

5.4 BoxContainer

Nearly all SAMR computations require creation, management, and manipulation of collections of box
objects. The best specific data structure for the collection, e.g., a list or a set, depends on how it will be
used. For example, it may be beneficial to create an ordering for the boxes to enable more efficient
searching over the collection. At other times fast insertion may be the key consideration for our
collection, so a simple vector or list is a better choice. Moreover, sometimes we have a single collection
that we would like to behave at times like a list and at times like a set. The BoxContainer class addresses
these issues by providing a single object that can be used in more than one way, depending on the
requirements at hand. It also helps eliminate redundant copies of box collections.

BoxContainer has two modes: the “unordered” and “ordered” modes. These can also be thought of as
“list mode” and “set mode” respectively. Ordered here means that the order that iterators will return
the box objects does not depend on how the boxes were inserted, i.e., they have an intrinsic ordering.
In the unordered case, the order that the iterators will return the boxes depends on how they were

added to the collection.
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The BoxContainer class allows different manipulations to be performed on a single container object by
managing multiple representations as necessary. Regardless of the number of internal representations
a BoxContainer object maintains, only one instance of each Box in a collection exists. It is essential to
know that a BoxContainer object must be in the proper state required for any manipulation that will be
performed. For example, intersectBoxes() methods in the BoxContainer class require the container to
be unordered. If one has an ordered container, its state must be set to unordered prior to calling one of
these methods. For example:

BoxContainer bc;
Box b;

bc.unorder () ;
bc.intersectBoxes (b) ;

A developer does not need to be concerned with changes to the internal container representation that
result from the call to the unorder() method. It is sufficient to know that calling the unorder() method
puts the object into an unordered state, which allows the intersectBoxes() operation to be efficient; e.g.,
without constructing excessive copies of Boxes in the container. Furthermore, changing the container’s
internal representation does not cause Boxes in the container to be replicated. At any given time the
container holds exactly one instance of each Box held by it.

We have intentionally chosen to require that applications explicitly call order() or unorder() rather than
letting BoxContainer methods make that transformation behind the scenes. The reason is that there is a
finite cost associated with changing the mode of the BoxContainer and it is therefore better to structure
an algorithm so that it does not make unnecessary changes to the mode a BoxContainer’s mode.
Requiring applications to make this mode change serves as a reminder that some overhead cost is
involved.

The documentation for the BoxContainer class describes ordering and other requirements of each of its
methods. In particular, it indicates which methods work on ordered and unordered containers; methods

with the same requirements are grouped together.

5.4.1 Box Tree

A BoxContainer option exists to create an internal search tree representation based on the spatial
coordinates of the Boxes in the container. This option can be used to reduce the cost of searching
operations in the methods removelntersections(), intersectBoxes(), findOverlaps(), and hasOverlap().
This option is invoked by calling the BoxContainer method makeTree(). This option should only be used
in cases where the listed search methods will be called multiple times on the same unchanging
BoxContainer. The cost of building the tree representation is O(N(log(N))), while the tree reduces the
cost of the search operations to O(log(N)) from O(N). Thus it is advisable to only use the tree
representation when the reduction in search cost is expected to offset the cost of building the tree.

Constructing the tree representation via makeTree() will change nothing about the Boxes stored in the
container, nor will it change the ordered/unordered state of the container.
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5.5 Box Ordering

In this section, we briefly describe what ordering of Boxes in a BoxContainer means. Each box has a
Boxld object, which has a Globalld and a Periodicld. The Periodicld is only relevant to periodic domains

and is not essential to this box ordering discussion. Therefore, it will not be discussed further here.

The Globalld indicates the rank of an MPI process that is considered to own the Box. A Globalld also has
a Localld that is the local identifier of the Box on the owning process. Note that the local identifier for a
Box is not unique since different Boxes owned by different processes may have the same local identifier.

So, a Box has two basic pieces of identifying information for our purposes here: its owning process rank,
and its local process ID,. Boxes are ordered based on the Boxld class less-than comparison operator.
The operator compares owning process ranks and local IDs in this order. Thus, a Box owned by a lower
rank process is “less than” a Box on a higher rank process. If two Boxes reside on the same process, the
Box with the lower local ID is “less than” the one with the higher local ID. More details about these
concepts and how they are used are provided in Section 6 and Section 8.
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6 SAMR patch hierarchy

The class PatchHierarchy is used to represent the entire hierarchy of nested levels that make up an
SAMR mesh.

6.1 Key concepts

A PatchHierarchy represents the entire SAMR hierarchy, and it consists of the PatchLevels each of which
represents a single level of resolution. A PatchlLevel holds the distributed Patches, which in turn hold
the data representing the state of the problem.

6.2 Major classes and their associations

PatchHierarchy HAS-A: vector of PatchLevel, PatchDescriptor (manages data allocation on all Patches in
the hierarchy), BaseGridGeometry (describes the computational domain), and parameters that describe
features of the hierarchy, such as the maximum number of levels allowed and the refinement ratios
between adjacent levels.

PatchLevel HAS-A: BoxLevel, PatchContainer (map<Boxld, Patch*>), BoxContainer (describes the
physical domain using the mesh resolution of the level), a collection of local Patches,
BaseGridGeometry, PatchDescriptor, and IntVector refinement ratios describing the relationship to the
next coarser level and level zero.

BoxLevel describes a distributed (in the MPI sense) collection of Boxes. Within the PatchLevel, the
BoxLevel is used to describe distributed portion of the level’s mesh that exists on each processor.
BoxLevel is explained in greater detail in Section 7.

Patch is the distributed object in a PatchHierarchy. For any MPI process, the Patches held by a
PatchLevel are those that are owned by that process, and the PatchLevel has no built-in means to access
the Patches from other processes. Patchlevel’s iterator iterates over the Patches that exist on the local

process.

Patch HAS-A: Box, PatchDescriptor (shared with owning PatchHierarchy/Level), PatchGeometry
(manages relationship between the Patch’s index space and location in physical coordinates), vector of
PatchData.

6.3 Example

This code example shows nested loops that iterate over all of the levels and patches of a
PatchHierarchy.

boost::shared ptr<hier::PatchHierarchy> hierarchy;

int num levels = hierarchy->getNumberOfLevels () ;
for (int In = 0; 1n < num levels; ++1n) {
boost::shared ptr<hier::PatchLevel> level = hierarchy->getPatchLevel (1n);
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for (hier::PatchlLevel::iterator p(level->begin());
p !'= level->end(); ++p) {
boost::shared ptr<hier::Patch> patch = *p;
// put operations on patch here
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7 GridGeometry, PatchGeometry, and specialized geometry classes

SAMRAI geometry classes describe and manage attributes of index spaces used in SAMR hierarchies.

7.1 Key concepts

All grid geometry classes must inherit from BaseGridGeometry, which is an abstract base class but
implements much of the general functionality for all grid geometries. A BaseGridGeometry object has a
BoxContainer whose Boxes define the full extent of the computational mesh at the coarsest level of
resolution for the problem. The maximum allowable extent of the mesh index space on any finer level is
represented as a refinement of these Boxes. The BaseGridGeometry class also has methods used during
construction of a PatchLevel to determine how each Patch relates to the physical domain boundary. The
most basic concrete implementation of BaseGridGeometry is GridGeometry.

Each Patch has a PatchGeometry object that describes the relation of the Patch to the problem
boundary. PatchGeometry methods can be queried to determine whether a patch touches a problem
boundary, either physical or periodic. Containers of BoundaryBox objects that provide specific
information about which Patch cells touch a physical boundary can be retrieved from the
PatchGeometry object owned by a Patch as well.

GridGeometry and PatchGeometry have virtual methods but are not abstract base classes. They provide
sufficient functionality to understand how Patches relate to each other and problem boundaries as we
have just described. In addition, it is often useful to specialize these classes via class inheritance derive
to describe the physical coordinates of the mesh. SAMRAI provides CartesianGridGeometry and
CartesianPatchGeometry classes derived from these base classes that may be used in problems that
employ simple Cartesian meshes. Users that require similar mesh geometry specialization should follow
this pattern of creating subclasses of GridGeometry and PatchGeometry.

During construction of a PatchLevel, the PatchGeometry is constructed by the GridGeometry and then
set on the Patch using Patch::setGridGeometry(). This functionality should be replicated in any user-
defined specialized grid geometry and patch geometry classes.

GridGeometry is also used to manage multiblock metadata, but discussion of that functionality is
contained in the Multiblock section.

25



SAMRAI Concepts and Software Design

7.2 Major classes and their associations

BaseGridGeometry

GridGeometry

e BN PatchGeometry

Concrete implementation that

may be specialized by child class

SpecializedGridGeometry
creates

A specialized implementation may H SpecializedPatchGeometry
hold data describing physical attributes

of the geometry

Figure 5: Geometry class associations

BaseGridGeometry HAS-A: Dimension, BoxContainer (boxes describing extent of index space on level
zero), IntVector (describing the directions with periodic boundaries, if any). A BaseGridGeometry is
passed into the constructor of PatchHierarchy and is constant for the life of that hierarchy.

GridGeometry IS-A: BaseGridGeometry via class inheritance. It contains no additional state data,

allowing for the most basic concrete instantiation of a grid geometry.

A SpecializedGridGeometry object (e.g., CartesianGridGeometry) IS-A: GridGeometry via class
inheritance. HAS-A: Data relating index space to physical coordinates.

PatchGeometry HAS-A: Dimension, PatchBoundaries (contains an array of BoundaryBoxes), bools telling
whether the Patch touches a regular or periodic boundary. A PatchGeometry is created for every Patch

and is constant for the life of that Patch.

A SpecializedPatchGeometry object (e.g., CartesianPatchGeometry) IS-A: PatchGeometry via class
inheritance. HAS-A: Data relating index space of the Patch to physical coordinates.

7.3 GridGeometry and PatchGeometry object usage

BaseGridGeometry and related classes are important objects for the infrastructure of SAMRAI, but
typically there is not expected to be much direct use of the grid geometry in user code. The most
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common usage is to ask a GridGeometry object for a container of Boxes that describe the physical
problem domain using the methods getPhysicalDomain() or computePhysicalDomain().

The main use of PatchGeometry in user code is to get information about how a Patch touches
boundaries of the mesh. The boolean query methods getTouchesRegularBoundary() and
getTouchesPeriodicBoundary() are used to indicate whether a Patch touches a certain type of boundary
at all. For Patches that touch physical boundaries, the PatchGeometry holds BoundaryBox objects that
provide information about how the Patch touches the boundary.

B DN

Physical boundary

Patch

BoundaryBoxes

Figure 6: PatchGeometry holds BoundaryBox objects that lie across a physical boundary from a Patch

The BoundaryBox class contains information on how the Patch touches the boundary (along a node, an
edge, or a face) and whether the boundary is at the upper or lower extents of the Patch in each
coordinate direction. The containers of BoundaryBoxes held by PatchGeometry can be used when
setting boundary values for simulation data:

const Dimensioné& dim = patch.getDim() ;
boost::shared ptr<PatchGeometry> patch geom( patch.getPatchGeometry () );

for (int codim = 1; codim <= dim.getValue(); ++codim) {

const Array< BoundaryBox >& boundary boxes =
patch geom->getCodimensionBoundaries( codim );

// Code to set values at boundaries with given codimension.
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7.4 Specialization for Cartesian geometries

SAMRAI provides geometry classes that are specializations of the GridGeometry and PatchGeometry to
represent Cartesian meshes. These specializations add data for the physical coordinates of the mesh
and query functions to retrieve the physical coordinates of the lower and upper corner of a Patch and
the mesh spacing increment in each coordinate direction. These coordinates can then be used to
compute the physical coordinates of any given point in the mesh. When a PatchHierarchy is constructed
with a CartesianGridGeometry object, the geometry object will create a CartesianPatchGeometry object
on each Patch with these data initialized properly.
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8 Patch distribution and neighbor relationships

This section discusses how SAMRAI represents distributed Patches and provides Patch neighbor and
overlap information to application developers. We call this data, and others that describe the mesh, the
mesh metadata.

8.1 Key concepts

Recall that each Patch and its data are assigned to a single process in an MPl Communicator. For
scalability to large numbers of processes, no single process owns a complete description of the Patch
distribution for an AMR hierarchy, typically. By default, SAMRAI only stores the neighbor and overlap
Patch relationship information on each process that is required to support parallel inter-patch data
communication and adaptive meshing. However, SAMRAI does provide ways to generate a globalized
view of this information on each process if needed. This is useful for debugging and when working with
applications and other libraries that require each process to have a global view.

8.2 BoxLevel and Connector classes

Two important SAMRAI classes that maintain and provide access to distributed Patch relationships are

BoxLevel and Connector.

A BoxLevel object stores a set of boxes, each of which is owned by a process analogous to the way a
PatchLevel stores patches. The BoxLevel is the metadata for the PatchLevel. It describes the boxes and
the processes they are assigned to. Each Box in a BoxLevel object has a Boxld, which is unique across all
processes over which the Boxes are distributed. Each BoxId holds a (MPI) rank and a Localld. The rank is
the owning process of the Box and the Localld is an identifier that is unique on the local process for the

BoxLevel.

We use Connectors to store overlap relationships between two boxes in a BoxLevel or in two different
BoxLevels. Overlap relationships are derived from metadata and are considered part of the metadata.
A Connector can maintain overlap relationships between Boxes in two BoxLevels, referred to as the
“base” and the “head”. Currently, a Connector describes only relationships from the base to the head.
That is, for each Box in the base, the Connector knows which boxes in the head relate to it. A Connector
may hold a pointer to its transpose, the Connector going the other direction. Constructing another
Connector with the base and head switched creates relationships going in the other direction. A
Connector whose base and head are the same BoxLevel stores relationships between boxes in that
BoxLevel.

The overlap relationships described by a Connector are defined by the width of the Connector. The
width is an IntVector describing how much a base box has to grow to have an overlap relationship with a
head box. Thus, we consider two boxes overlapping if they are within the Connector width of each
other. A width of zero means we consider the boxes overlapping only if they actually intersect. A width
of one means we consider the boxes overlapping if they merely touch each other. We always specify
the width in the index space of the base BoxLevel.
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While many Connectors are generated and used within SAMRAI, the Connector objects most important
to application developers are those describing overlaps between Patches an AMR hierarchy. When a
PatchLevel is built, SAMRAI generates Connectors between its BoxLevel and BoxLevels associated with
adjacent levels in the hierarchy. It generates overlaps with widths big enough to support all
components that require overlap data to function. This width is a function of the refinement ratio
between the levels, the stencil widths of interlevel transfer operators, ghost width of data on the
Patches, etc.

Overlap data for each BoxLevel is cached in its PersistentOverlapConnectors object. To access the
overlap with another BoxLevel, provide the PersistentOverlapConnector with that BoxLevel and the
width defining the overlaps you want.

BoxLevel and Connector objects may be in globalized mode, where each process contains a full
representation of the data on all other processes, or distributed mode where each process holds only
data associated with the process and what it needs to communicate with other processes. The
distributed mode is used most commonly by SAMRAI because constructing a distributed Connector is a
scalable operation.

Writer of simple applications similar to the Euler, LinAdv and ConvDiff examples do not need to directly
access any metadata. Metadata is used by mesh management code such as GriddingAlgorithm,
RefineSchedule and CoarsenSchedule. More advanced applications might have to access BoxLevels and
overlap Connectors in the hierarchy.

Developers seeking to duplicate or modify SAMRAI's mesh management code should be familiar the way
Connectors are used. For details, see the classes OverlapConnectorAlgorithm and
MappingConnectorAlgorithm.

8.3 Basic usage examples

These examples show how to access Boxes in a BoxLevel and overlap data.

How to get the overlap Connector in a PatchHierarchy:

const BoxLevel &10 = *hierarchy.getPatchLevel (0) ->getBoxLevel () ;

const BoxLevel &l11 = *hierarchy.getPatchLevel (1) ->getBoxLevel () ;

const IntVector width( 10.getDim(), 1 );

const Connector &10 to 11 = 1l0.getPersistentOverlapConnectors ().
findConnector( 11, width );

How to loop through neighbors in the overlap Connector:

for ( Connector::NeighborhoodIterator nhi = 10 to 1l.begin();
nhi != 10 to 1ll.end(); ++nhi ) {
const Box &base box = *10.getBox(*nhi);
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const BoxContainer neighbors;
10 _to_ll.getNeigbhorBoxes( base box.getBoxId(), neighbors );
// neighbors contains the neighbors of base box.

How to access neighbors data for boxes in a BoxLevel. This loop is similar to the previous, but it goes
through all base Boxes, whether or not they have neighborhoods in the Connector. The previous loop

only sees boxes with neighborhoods.

const BoxContainer &base boxes = 10 to ll.getBase().getBoxes();
for ( BoxContainer::ConstlIterator bi = base boxes.begin();
bi != base boxes.end(); ++bi ) {
plog << "Base box " << *bi;
if ( 10 _to ll.hasNeighborSet( bi->getBoxId() ) {
const BoxContainer neighbors;
10 _to ll.getNeigbhorBoxes( bi->getBoxId(), neighbors );
// neighbors contains the neighbors of *bi.
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9 Variables and patch data

In SAMRAI the concept of variable and patch data are closely related, but have distinct roles within the
library, which we describe in this section.

9.1 Key concepts

A Variable is an object that abstractly represents a quantity that can be instantiated on the mesh
hierarchy, such as “density” or “flux”. Each variable has a name, and the variable objects tend to be
persistent and static through a simulation. Instantiations of Variable subclasses define datatypes and
centering. Variable objects do not contain storage for data on the mesh.

This is in contrast to PatchData, which represent the instantiations of data on a particular hierarchy.
PatchData objects are dynamic throughout the simulation as the solution and mesh change. The
PatchData class, like the Variable class, is as an abstract base class, which provides the interface which
define how a particular type of data is to be manipulated on the hierarchy, for example how it can be
copied and communicated. In fact, the PatchData interface is the complete collection of methods that
SAMRAI uses to manipulate data on the hierarchy. If you can implement this interface, SAMRAI can
interoperate with your data. The implementations for such manipulation will depend on, for example,
the centering of the data on the mesh, whether it is multi-valued, and the data types used such as

integer or floating-point representations.

As a convenience, SAMRAI comes with a number of commonly used Variable and PatchData types
already implemented, such as CellData and NodeData. However, it is a key feature of the library that
the user can implement any data type they wish, so long as they implement the PatchData interface.
Some examples of possible custom user-defined Variable/PatchData types might be a data type to
represent a field of particles, or a quaternion-valued field. Note that many users of the library who are
not doing anything particularly esoteric will not need to implement any custom data types in this
manner. However, if a user is using SAMRAI to retrofit an existing simulation code, it will be common
that they will want to create their own custom PatchData/Variable data types to match the way data is

organized in the simulation code.

9.2 Major classes and their associations

Variable, PatchDataFactory, and PatchData are all abstract base classes that must have corresponding
concrete subclasses. A Variable subclass, e.g. CellVariable, creates the corresponding PatchDataFactory
subclass, such as a CellPatchDataFactory. The role of a subclass of PatchDataFactory is to create
instances of a particular type of PatchData, in this case the CellData class. Similarly related triples of
classes exist for each of the SAMRAI supplied data types, for example: NodeData, EdgeData, etc.

Variable (base class) HAS-A: dimension, name, instance id, PatchDataFactory.

NOTE: Variable has-a dimension implies that if one uses multiple hierarchies with different dimensions,
then different (dimension-dependent) variables are needed.
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PatchDataFactory (base class) HAS-A: IntVector (ghost width)
PatchData (base class) HAS-A: Box (box and ghost box), IntVector (ghost width), double (timestamp)

NOTE: That a variable, by itself, is insufficient to allocate a PatchData object. The ghost width is needed
which is provided by a Factory (refer to VariableDatabase discussion below).

The following diagram sketches the relationships between the three base classes, and the three
required concrete subclasses for a fictional user implemented datatype MyPatchData associated with a
variable MyVariable. This is only a sketch that highlights the most conceptually important relationships,
methods, and data members between these triples of classes.

class Variable class PatchDataFactory class PatchData

Box d_box;
Box d_ghost_box;

virtual void getPatchDataFactony) = 0 virtual void allecate(y = 0

virtual void packStream() = 0
virtual void unpackStream() = 0
virtual void copy = 0

Class Myvariable : public Variable Class MyPatchDataFactory - public PatchDataFactory

- - <<createss >
virtual void getPatchDataFactory) virtual void allocate() <<creates> >~ lclass MyPatchData : public PatchData

virtual void packStreamq)
virtual void unpackStream{)
virtual void copy)

9.3 Variable context, variable database, and data id

The concept of a “variable context” is very important, although not entirely self-describing and often
unclear to a new user of the library. A variable context is essentially a named copy of storage associated
with a particular variable that is usually reserved for a particular use or function in the simulation. For
example, one might have two copies of a CellData field, one which represents the data at the current
simulation time t,, and one which represents the values at an advanced simulation time t,.;. In this case
the user could use two variable contexts and name them (for example) “current” and “new”. ltis also
important to note that two different contexts of the same variable may have differing ghost cell widths

(including zero or no ghost cells).

The VariableDatabase is a convenient utility that allows the user to maintain and access a collection of
variables and associated contexts. You can think of the VariableDatabase as being a table, with named

variables along one axis and named contexts along the other axis.

VariableDatabase “current” “new” “scratch”
“density” 1 2 3
“pressure” 4 5 6
“velocity” 7 8
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For each combination of variable and context, there is a unique “data id” which identifies that particular
instance of data. These data id’s are created and maintained internally by the VariableDatabase as
variable-context pairs are registered with the database. These data ids can be used to fetch particular
instances of PatchData from a patch using the Patch::getPatchData(int data_id) method.

Note that not all variable-context pairs need to be registered or have data ids associated with them. In
the example table above, there happens to be no need for a “scratch” context for the variable

“velocity”.

9.4 Basic usage example
/ *

* This example shows how Variable, VariableContext, the
* VariableDatabase, and a Patch work together to define and
* instantiate PatchData.

*/

#include "SAMRAI/hier/VariableDatabase.h"
#include "SAMRAI/pdat/CellVariable.h"
#include "SAMRAI/pdat/CellData.h"
#include "SAMRAI/pdat/NodeVariable.h"
#include "SAMRAI/tbox/SAMRAIManager.h"
#include "SAMRAI/tbox/SAMRAI MPI.h"

using namespace SAMRATI;

#include <boost/shared ptr.hpp>
using namespace boost;

#include <iostream>
using namespace std;

int main(int argc, char* argvl[])
{
tbox::SAMRAI MPI::init (&argc, &argv);

const tbox::Dimension dim(2) ;

/*
* Create two variables, one scalar with cell centering, and one
* vector with node centering

*/

shared ptr< pdat::CellVariable<double> > density(
new pdat::CellVariable<double>(dim, "density") );

shared ptr< pdat::NodeVariable<double> > velocity (
new pdat::NodeVariable<double> (dim, "velocity", 2) );

// Create three contexts

shared ptr< hier::VariableContext > current (
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hier::VariableDatabase::getDatabase () ->getContext ("current") );

shared ptr< hier::VariableContext > scratch(
hier::VariableDatabase: :getDatabase () ->getContext ("scratch") );

shared ptr< hier::VariableContext > special (
hier::VariableDatabase::getDatabase () ->getContext ("special") );

/*
* Create a variable database, and register some variable-context
* pairs with it.

*/
hier::VariableDatabase* var db = hier::VariableDatabase::getDatabase()

hier::IntVector gw0O = hier::IntVector::getZero(dim);
hier::IntVector gwl hier::IntVector::getOne (dim) ;

int d _cur_id var db->registerVariableAndContext (density, current, gw0);
int v _cur id = var db->registerVariableAndContext (velocity, current, gw0);

int d _scr_id var db->registerVariableAndContext (density, scratch, gwl);
int v_scr_id = var db->registerVariableAndContext (velocity, scratch, gwl);

int v_sp id = var db->registerVariableAndContext (velocity, special, gwl);

/
In order to instantiate data, we need a patch to instantiate it
on. In a more realistic application, we would typically obtain
the Patch from a PatchlLevel which in turn would be obtained from
a PatchHierarchy. 1In order to limit the scope of this example,
we manually create an isolated patch here that is not on a
hierarchy.

L R S

In order to create a patch, we need a box and a PatchDescriptor.
The PatchDescriptor describes the types of data that can be
instantiated on the patch; it is essentially a collection of
PatchDataFactories. This is information that we have supplied
to the variable database through our variable-context pair
registration calls.

L S S S . S

hier::BlockId block id(0);
const hier::Box box(hier::Index(0,0), hier::Index(3,3), block id);

hier::Patch patch(box, var db->getPatchDescriptor()):;

/*
* Once we have a patch, we can allocate our PatchData on it. Note
* that in the usage pattern shown here, the use of the
* PatchDataFactory is hidden from the user, as the
* PatchDataFactory objects are stored with the patch inside the
* PatchDescriptor. Internally, allocatePatchData() uses the
*

PatchDescriptor to look up the correct factory corresponding to
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* the supplied data id, and uses it to do the PatchData
* allocation.

*/

patch.
patch.

patch.
patch.

patch.

/*

allocatePatchData(d cur id);
allocatePatchData(v_cur id);

allocatePatchData(d scr id);
allocatePatchData (v_scr id);

allocatePatchData (v_sp id);

The newly allocated PatchData can now be pulled off of our patch
to work on. We can identify the PatchData we want through the
* data id assigned by the variable database.

*/

shared ptr< hier::PatchData > dendata(
patch.getPatchData(d cur id) );

shared ptr< hier::PatchData > veldata(
patch.getPatchData(v_cur id) );

// Work with the patch data...

tbox::

}

SAMRAIManager: :shutdown () ;

9.5 Variable and PatchData types in SAMRAI

SAMRAI supplies a number of Variable and PatchData types that are ready to use. They are:

* CellData
* NodeData, OuternodeData

* FaceData, OuterfaceData

* EdgeData, Outeredge Data
e SideData, OutersideData

* SparseData
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Cell Centered Node Centered Face Centered
O L ® ®

Outernode OuterFace User Defined

e N

® L

ccotT—oo._T

The “outer” versions of data do not instantiate data on the interior of patches. These would typically be
used for managing the interaction of data between a coarser and a finer level, such as the handling of
flux mismatches. FaceData and SideData are similar, only differing in the ordering of the data layout.

~

Each PatchData type supplied with the library contains a corresponding iterator class that can be used to
traverse the data in a uniform way. The conventions employed are designed to be reasonably similar to

those used within the STL. An example iterator usage is:

for (pdat::CellData<double>::iterator ic(pdat::CellGeometry::begin(box));
ic !'= pdat::CellGeometry::end(box); ++ic) {
data(*ic) = 1.0;
}

9.6 User defined patch data types

Implementation of a custom patch data type requires creating a number of derived classes, each of
which implement abstract operations that SAMRAI will call in order to do its work with your data on an
AMR hierarchy. The classes that need to be implemented that we have already discussed are:

* Variable
* PatchDataFactory
* PatchData
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In addition, a custom variable with a custom centering or other non-standard feature may also need a
custom way of describing how the data overlaps when patches it resides on intersect. The interfaces

that may need to be implemented are:

* BoxOverlap
e VariableFillPattern

VariableFillPattern subclasses create BoxOverlap subclasses that describe the details of what data needs
to be copied or communicated when two patches intersect. For additional details regarding the use of

overlaps and fill patterns, refer to Chapter 10, in particular Section 10.4.
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10 Patch hierarchy construction and adaptive meshing

The hierarchy is a container of levels, with methods for inserting and deleting levels. One can set up the
hierarchy manually using these methods, but it is tedious to do for all but the simplest of configurations.

Most users would use the GriddingAlgorithm to set up and adapt the mesh hierarchy. The
GriddingAlgorithm efficiently sets up the hierarchy while ensuring its has the configurations appropriate
for working with other SAMRAI components (such as the transfer schedules).

This section covers the primitive methods for building the hierarchy but assumes the user will use the

GriddingAlgorithm for mesh generation and adaptive meshing.

10.1 Key concepts

Mesh generation consists of several major steps:

Tagging: identify cells that should be refined

Clustering: compute a set of boxes containing those cells

Box adjustments: make slight adjustments to ensure nesting and other requirements
Partitioning: partition the boxes to achieve balanced loads in parallel.

Construction: construct the new level

o vk wnN e

Initializing: populate the new level with solver data.

The first four steps are illustrated below.

g

1. Tag cells 2. Cluster 3. Box adjustments

4. Partition
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Mesh adaptation is very similar to mesh generation in that a new level is generated to replace the
current level. In adaptation, we use solver data from the current level as well as coarser levels to
initialize the new level. In mesh generation, there is no current level at the same resolution, so all solver

data comes from the coarser levels.

The GriddingAlgorithm uses some abstract interfaces to interact with interchangeable components:
tagging, clustering, partitioning and initializing level data.

10.2 Major classes and their associations

Major classes are the PatchHierarchy, GriddingAlgorithm and a set of strategies used by
GriddingAlgorithm.

We construct the PatchHierarchy one level at a time, using the method makeNewPatchLevel(). This
method takes a BoxLevel (metadata describing the boxes in the new level) and constructs a new
PatchLevel in the hierarchy. To remove a level from the hierarchy, use the method removePatchLevel().

The GriddingAlgorithm provides higher-level interfaces for generating and adapting the hierarchy.

GriddingAlgorithm's main interfaces are:

makeCoarsestLevel(): make the coarsest level

2. makeFinerLevel(): make the next finer level in the hierarchy, increasing the number of levels by
one.

3. regridAllFinerLevels(): regrid all levels above a given level.

These methods not only calls makeNewPatchLevel() but performs all the mesh generation and
adaptation steps described above. Moreover, they ensure that the hierarchy configuration satisfies

proper requirements for simulations.

Each GriddingAlgorithm objects holds a pointer to the hierarchy it operates on and pointers to
implementations of strategies used by the mesh generation steps.

<UML showing GrididngAlgorithm, PatchHierarchy, BoxGeneratorStrategy, LoadBalanceStrategy and
TagAndInitializeStrategy>

The roles of the strategies are:

BoxGeneratorStrategy: Defines interface for clustering tags into non-overlapping boxes.

2. LoadBalanceStrategy: Defines interface to redistribute a set of boxes among the MPI tasks to
achieve a balanced load. The boxes may be cut into smaller boxes in the process.

3. TagAndInitializeStrategy: Defines interface for tagging cells for refinement, initializing data on a

new level.

The strategy implementations are used in mesh generation. First, the TagAndInitializeStrategy identifies
the cells that the application wants to be refined. The tag data is a cell-centered integer PatchData and
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living on the next coarser level. The BoxGeneratorStrategy generates a set of non-overlapping boxes
containing the tagged cells and as few untagged cells as feasible. The GriddingAlgorithm makes small
adjustments to the evolving boxes to ensure they are suitable for simulation. For example, they must
follow proper nesting rules. Now, we have a BoxLevel defining exactly the extent of the new level. The
LoadBalanceStrategy redistributes the boxes, possibly cutting up some boxes to a portion of their work
to other processes. After load balancing, we have the box configuration for the new level. The
GriddingAlgorithm uses makeNewPatchLevel() to generate the level. The TagAndInitializeStrategy
initializes the level data.

10.3 Basic usage examples
To manually create a PatchHierarchy with one level:

boost::shared ptr<BaseGridGeometry> base grid geometry =
new BaseGridGeometry( dim,
“My geometry”,
geometry input database );
PatchHierarchy hierarchy(“My hierarchy”,
base grid geometry,
hierarchy input database);
BoxLevel box level( ratio,
base grid geometry,
SAMRAI MPI::getSAMRAIWorld() );

hierarchy.makeNewPatchLevel ( 0, box level );
To use GriddingAlgorithm to build a PatchHierarchy with the maximum number of levels:

boost::shared ptr<BaseGridGeometry> base grid geometry =
new BaseGridGeometry( dim,
“My geometry”,
geometry input database );
boost::shared ptr<PatchHierarchy> hierarchy =
new PatchHierarchy( “My hierarchy”,
base grid geometry,
hierarchy input database );

boost::shared ptr<TagAndInitializeStrategy> level strategy = ...;
boost::shared ptr<BoxGeneratorStrategy> generator = ...;
boost::shared ptr<LoadBalancerStrategy> balancer = ...;

GriddingAlgorithm gridding algorithm(
hierarchy,
“My gridding algorithm”,
gridding algorithm database,
level strategy,
generator,
balancer );
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Array<int> tag buffer( hierarchy->getMaxNumberOfLevels (), 2 );
gridding algorithm.makeCoarsestLevel( 0.0 );
while ( hierarchy->getNumberOflLevels () <
hierarchy->getMaxNumberOfLevels () ) {
gridding algorithm.makeFinerLevel (
0.0,
true,
tag buffer[hierarchy->getFinestLevelNumber ()] );

To adapt the above hierarchy after doing some time integration:

// Integrate a few time steps.
gridding algorithm.regridAllfinerLevels( 0, regrid time, tag buffer );

10.4 Customizing algorithmic features

Of the three strategies used by GriddingAlgorithm, SAMRAI provides off-the-shelf implementations for
BoxGeneratorStrategy and LoadBalancerStrategy. Only TagAndInitializeStrategy requires user
customization. At the very least, users need to implement
TagAndInitializeStrategy::tagCellsForRefinement() and TagAndInitializeStrategy::initializeLevelData()
because there is no generic implementations for those. Method tagCellsForRefinement() implements a
user-defined algorithm to determine which cells on a given level should be refined. Method
initializeLevelData() is a call-back that SAMRAI uses whenever a level is created either during the initial
hierarchy construction or while regridding. It should allocate and populate patch data on the level. On
fine levels, this is usually done with a RefineSchedule.
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11 Patch data communication conceptual overview

11.1 Key concepts

Data communication is handled through the infrastructure for refining and coarsening. Both refining
and coarsening are managed through a set of classes that apply largely the same concepts to each case.

¢ Algorithm — An Algorithm class is used to describe and manage the communication that is to be
done at a specific point during the execution of the application. It knows about which data are
to be communicated and what operations will be executed, but it is independent of the
particular state of the hierarchy.

* Schedule — A Schedule class is used to execute the communication between two specific
PatchlLevels. It is constructed by the Algorithm and can exist only as long as its source and
destination levels exist.

* Operator — Operator classes are used by the Schedules to move data between meshes of
different resolutions. They are written to execute a specific numerical method of coarsening or
refinement, such as averaging for coarsening or linear interpolation for refinement.

* PatchStrategy — PatchStrategy abstract base classes are provided as a means for the user to
optionally add some application-specific operations to be called during the execution of a
Schedule.

* Fill patterns — Optional tools that can be used to enforce restrictions on where data is
communicated onto a destination level

These concepts all exist for both refining and coarsening under a parallel structure of classes. There are
RefineAlgorithm, CoarsenAlgorithm, RefineSchedule, CoarsenSchedule, etc.

11.2 RefineAlgorithm and CoarsenAlgorithm

The Algorithm objects are used to describe at a high level the operations that will be used in
communication at specific points in the execution of an application and are independent of the specific
layout of any PatchHierarchy. Algorithm objects are usually created during setup of the application, and
registration methods are called to register the data that will be communicated and the operators that
will be used to refine or coarsen.

xfer::RefineAlgorithm my algorithm;

my algorithm.registerRefine (dst id, // patch data id for destination data
src_id, // patch data id for source data
scratch id, // patch data id for scratch data
refine op); // operator for refinement

registerRefine() (or the corresponding method registerCoarsen()) can be called any number of times on
a single Algorithm object.
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Note that the refining-related methods presented in the code examples in this chapter are single
examples of overloaded methods that have multiple usage options. Please see the class documentation
for all possible options and to see the analogous methods in the coarsening-related classes.

11.3 RefineSchedule and CoarsenSchedule

While the Algorithms are used to describe the properties of the communication operations that are
independent of the mesh configuration, the Schedule objects manage and execute the communication
between two PatchlLevels that exist at a specific point in the run of an application. Schedules are built
using the createSchedule() methods in the Algorithm classes.

boost::shared ptr<xfer::RefineSchedule> my schedule =
my algorithm.createSchedule (dst level, // destination level
src_level, // source level
next coarser level, // int level number of
// next coarser level

hierarchy, // hierarchy where
// destination exists
patch strategy); // strategy for user

// defined operations

In this example the destination and source levels are of the same resolution (such as when moving data
from an old level to a new level when regridding). The schedule will set up transaction to copy data
from the source to the destination wherever they overlap, and any parts of the destination that do not
overlap the source will be filled from the next coarser level of the hierarchy using the refinement
operators that were registered with the Algorithm object.

Once a Schedule is created, the communication is invoked using the fillData() method for
RefineSchedule or the coarsenData() method for CoarsenSchedule. These communication methods can
be called any number of times as long as the Schedules are valid. The Schedules become invalid when
either their source or destination levels are destroyed.

11.4 RefineOperator and CoarsenOperator

RefineOperator and CoarsenOperator are abstract base classes that define the interface for the
refinement or coarsening of data. Operator objects are passed into the registration methods of the
Algorithm classes, providing the Operator that will be used on the particular data being registered. Each
concrete implementation of RefineOperator or CoarsenOperator is an implementation of a numerical
algorithm for refining or coarsening a specific type of PatchData. SAMRAI provides a number of
implementations of the Operator classes, and users may also write their own.

11.5 RefinePatchStrategy and CoarsenPatchStrategy

These strategy classes are abstract base classes that provide an interface for user-defined operations to
occur during the execution of a communication. The main pure virtual methods provided are
preprocess and postprocess methods that are called on each patch before and after the calls to the
Operators’ refine() or coarsen() methods. These allow users to implement any application-specific
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manipulation of internal data that may be needed before and after the inter-level operations of the
Operators. RefinePatchStrategy also provides an interface that is used for the filling of ghost data
around physical boundaries, which is described in more detail in the chapter on refinement.

11.6 Fill patterns

The use of fill patterns is an optional way to add some restrictions that limit which parts of the
destination level receive data during communication. There are two types of fill patterns, each of which
is defined by an abstract base class, PatchLevelFillPattern and VariableFillPattern.

A PatchLevelFillPattern, used only in refinement communication, is given to a RefineSchedule at its
construction and limits to communication of all data to a specific portion of the destination level. For
example, it may be desired to only communicate data onto ghosts at coarse-fine boundaries;
PatchLevelBorderFillPattern is an implementation of PatchLevelFillPattern that enforces this restriction.

A VariableFillPattern, which can be used both in refining and coarsening, is associated with each data
item that is registered with the Algorithm. (Thus each data item can have a different VariableFillPattern,
or none at all.) VariableFillPatterns are used to restrict the filling on the destination patches to a specific
part of each patch. A user may want to fill a certain NodeData object only on the nodes on the patch
boundary, or may want to fill a certain CellData object only in the first layer of ghost cells.
Implementations of VariableFillPattern usually are specialized for a specific data centering
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12 Data refinement communication

12.1 Key concepts

Refinement communication is typically used for two primary purposes: for filling ghost regions on a
level, and for regridding. Refinement communication is conceptually split into three main parts, called
the algorithm, the schedule, and the patch strategy. These concepts were described in Section 11.1.

12.2 Major classes and their associations

The major classes associated with refinement are RefineAlgorithm, RefineSchedule, RefineOperator,
RefinePatchStrategy, PatchLevelFillPattern, and VariableFillPattern. These classes were discussed in the

prior Section 11.2.

12.3 Basic usage example

A common use case for refinement is to fill the ghost cells on a finer level, using data from the same
level and data interpolated from coarser levels at coarse fine boundaries. In this snippet we’re showing
how to fill the variable “u” on level 1 using data interpolated from level 0 using a built-in refine operator
CartesianCellDoubleLinearRefineOperator. In this example, the situation is XXX, but YYY. We are
assuming level 0 is at the same simulation time as level 1, and are therefore not invoking time
refinement. First we set up the variable, contexts, and data_ids. Then, we show how to use
registerRefine to set up the algorithm, createSchedule to construct the schedule for filling the
destination level, and finally we call fillData() to execute the schedule and fill the ghost cells.
/*

* Create a scalar variable with cell centering.

*
sh;red_ptr< pdat::CellVariable<double> > u(

new pdat::CellVariable<double> (dim, "u") );

/*
* Create two contexts, named cur (current) and scr (scratch)
*/

shared ptr< hier::VariableContext > cur(

hier::VariableDatabase: :getDatabase () ->getContext ("cur") );

shared ptr< hier::VariableContext > scr(
hier::VariableDatabase: :getDatabase () ->getContext ("scr") );

/*
* Create a variable database, and register some variable-context
* pairs with it.

*/

hier::VariableDatabase* var db = hier::VariableDatabase::getDatabase()

hier::IntVector gw0O = hier::IntVector::getZero(dim);
hier::IntVector gwl = hier::IntVector::getOne (dim) ;

int cur id = var db->registerVariableAndContext (u, cur, gw0);
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int scr id = var db->registerVariableAndContext (u, scr, gwl);

// Note that for brevity we are not showing some steps like the creation of
// the hierarchy and the allocation of data.

shared ptr<hier::RefineOperator> refine op(
grid geom->lookupRefineOperator (u, "LINEAR REFINE") );

xfer::RefineAlgorithm fill ghosts_alg;

fill ghosts alg.registerRefine (scr id, // destination data
cur id, // source data
scr_id, // scratch space

refine op); // refine operator
shared ptr<xfer::RefineSchedule> fill ghosts L1;

int fill level num = 1;
int next coarser level num = 0;
fill ghosts L1 = fill ghosts alg.createSchedule (
hierarchy->getPatchLevel (fill level num),
next coarser level num,
hierarchy,
patch strategy):;

See example RefineCommunication.

CALL FILLDATA

12.4 Fill patterns found in SAMRAI

Fill patterns were discussed in Section 11.6. The following figures illustrate the destination of the built-
in variable fill patterns if they were used on a patch of 2x2 cells, and a destination that has a ghost width
of two.

Figure 7: FirstLayerCellVariableFillPattern
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Figure 8: FirstLayerCellNoCornersVariableFillPattern

Figure 9: FirstLayerNodeVariableFillPattern

Figure 10: SecondLayerNodeVariableFillPattern

Figure 11: SecondLayerNodeNoCornersVariableFillPattern
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12.5 Refine operators found in SAMRAI

The built-in operators in SAMRAI can be divided into two categories: those that are associated with the
CartesianGridGeometry and those that are generic with respect to the GridGeometry (MENTION
COORDINATE SYSTEM). In addition to these two categories, the operators are associated with a
centering (Cell, Node, etc.), a datatype (double, float, complex) and a refinement method (constant,

linear, conservative, etc.).
Operators that don’t depend on the coordinate system:

Where |Centering| is one of Cell, Node, Edge, Side, Face, and <Type> is one of Float, Double, Complex,

or Integer:

| Centering| | Type| ConstantRefine: Implements a constant refinement, where interpolated values are

equal to the coarse value.
Operators that work on Cartesian grids:

Cartesian|Centering| | Type|LinearRefine: Implements a linear refinement, where interpolated values
are derived from the coarse value and a linear slope determined from coarse data.

Cartesian|Centering| | Type|ConservativelinearRefine: Implements a conservative linear refinement,
where interpolated values are derived from the coarse value and a linear slope determined from coarse
data.
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13 Data coarsening communication

13.1 Key concepts

As the simulation results for any location on an AMR mesh have the greatest accuracy on the finest level
representing that location, it is necessary to coarsen these accurate results to the less accurate coarser
levels. The key concepts concerning data coarsening communication have already been described in
Chapter 11, Patch data communication.

13.2 Major classes and their associations

The major data coarsening communication classes are CoarsenAlgorithm, CoarsenSchedule,
CoarsenOperator, CoarsenPatchStrategy, and VariableFillPattern. They have all been discussed in
Chapter 11. Details about the CoarsenOperators will be supplied in Section 13.4 below.

13.3 Basic usage examples

boost::shared ptr<hier::PatchHierarchy> hierarchy;
boost::shared ptr<hier::Variable> var;
boost::shared ptr<hier::VariableContext> ctx;
tbox::Dimension dim;

/*
* Register the given variable, var, with context, ctx, obtaining the patch
* data index.

*/

hier::VariableDatabase* variable db = hier::VariableDatabase::getDatabase();

const hier::IntVector zero ghosts(dim, 0);

int new id = variable db->registerVariableAndContext (var, ctx, zero ghosts);

/*
* Create a CoarsenAlgorithm and register this data for coarsening.
*/

boost::shared ptr<hier::CoarsenOperator> coarsen op =

hierarchy->getGridGeometry () ->1lookupCoarsenOperator (var,
“CONSERVATIVE COARSEN") ;

xfer::CoarsenAlgorithm coarsen alg(dim);

coarsen_alg.registerCoarsen(new id, new id, coarsen op);

/*
* Coarsen data from finest level with coarser levels. Create a
* CoarsenSchedule for a level and its immediately coarser level and coarsen

*the data.
*/
for (int fine 1n = finest 1n; fine 1ln > coarsest 1ln; --fine 1n) {
const int coarse 1In = fine 1In - 1;
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boost::shared ptr<hier::PatchLevel> fine level (
hierarchy->getPatchLevel (fine 1n);

boost::shared ptr<hier::PatchLevel> coarse level (
hierarchy->getPatchLevel (coarse 1n);

boost::shared ptr<xfer::CoarsenSchedule> coarsen sched =
coarsen_alg.createSchedule (coarse level, fine level);
coarsen_sched->coarsenData() ;

13.4 Coarsen operators found in SAMRAI

Each implementation of the CoarsenOperator interface provided by the library is described below.
Applications are free to create their own by implementations by creating a class derived from
CoarsenOperator and implementing that base class’ pure virtual methods.

geom::CartesianCell[Complex, Double, Float]WeightedAverage: conservative cell-weighted averaging for
cell-centered [complex, double, float] data defined on a Cartesian mesh

geom::CartesianEdge[Complex, Double, Float]WeightedAverage: conservative edge-weighted averaging

for edge-centered [complex, double, float] data defined on a Cartesian mesh

geom:: CartesianFace[Complex, Double, Float]WeightedAverage: conservative face-weighted averaging
for face-centered [complex, double, float] data defined on a Cartesian mesh

geom:: CartesianOuterface[Complex, Double, Float]WeightedAverage: conservative face-weighted
averaging for outerface [complex, double, float] data defined on a Cartesian mesh

geom:: CartesianOuterSideDoubleWeightedAverage: conservative side-weighted averaging for outerside

double data defined on a Cartesian mesh

geom::CartesianSide[Complex, Double, Float]WeightedAverage: conservative side-weighted averaging
for side-centered [complex, double, float] data defined on a Cartesian mesh

pdat::Node[Complex, Double, Float, Integer]Injection: constant injection for node-centered [complex,

double, float, integer] data

pdat::OuternodeDoublelnjection: constant injection for outernode-centered double data

51



SAMRAI Concepts and Software Design

14 Time integration and solvers

SAMRAI provides a number of classes that implement some common AMR algorithms, including time
integration and solvers on an AMR hierarchy. While the framework supplies implementations of these
algorithms for common use case scenarios as a convenience, the developer is free to implement their
own algorithm and is not constrained to use those provided.

14.1 Time integration methods

Perhaps the class most likely to be used by an application code that uses explicit time integration is the

TimeRefinementIntegrator. It should be noted that the TimeRefinementIntegrator is more flexible than
its name implies, in that it can operate both in a time-refined mode, where finer grids take smaller time
steps that coarser grids, and also in a synchronized mode, where time steps are matched at all levels in

the hierarchy. The difference between these two modes is illustrated here:
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An application code can use TimeRefinementIntegrator by implementing the strategy class
TimeRefinementLevelStrategy, which contains the following pure virtual methods:
initializeLevellntegrator, getLevelDt, getMaxFinerLevelDt, advancelevel, standardLevelSynchronization,
synchronizeNewlLevels, resetTimeDependentData, resetDataToPreadvancedState, and
usingRefinedTimeStepping.

Note that this class manages the sequencing of steps on the various AMR levels, but is agnostic to any
particular integration scheme or process. This provides the flexibility needed for use with a wide variety
of application codes.

An implementation of TimeRefinementLevelStrategy is provided via the HyperbolicLevellntegrator,
which in turn relies on a user-supplied implementation of HyperbolicPatchStrategy to provide the
implementations for the pure virtual methods registerModelVariables, initializeDataOnPatch,
computeStableDtOnPatch, computeFluxesOnPatch, conservativeDifferenceOnPatch, and
setPhysicalBoundaryConditions.

52



SAMRAI Concepts and Software Design

The HyperbolicLevellntegrator and the TimeRefinementintegrator taken together implement the
classical Berger, Colella, Oliger AMR integration method.

The MethodOfLinesIntegrator, by contrast, is an implementation of a specific time integration scheme
for a system of ODEs, in particular, the Strong Stability Preserving (SSP) Runge-Kutta schemes. An
application can use this algorithm by implementing the MethodOfLinesPatchStrategy, which contains
the following pure virtual functions: registerModelVariables, initializeDataOnPatch,
computeStableDtOnPatch, singleStep, tagGradientDetectorCells, and setPhysicalBoundaryConditions.

14.1.1 External packages

SAMRAI also provides interfaces to the CVODE external package (a component of the Sundials suite) for
performing time integration on a system of ODEs. In order to use the CVODE solver, the user can
provide an implementation of the CVODEAbstractFunctions interface, namely the pure virtual methods
evaluateRHSFunction, CVSpgmrPrecondSet, and CVSpgmrPrecondSolve. See the CVODESolver.h header
for additional details.

14.2 Basic usage examples

The usage of these algorithm classes is best explained by studying simple but functional examples.

The linear advection example LinAdv is a good example of the use of TimeRefinementAlgorithm in
conjunction with HyperbolicLevellntegrator. A more complex example of using a system of equations
can be found in the Euler example.

The MethodOfLinesIntegrator algorithm has an example implementation in the convection-diffusion
example ConvDiff.

The CVODE package interface has an example implementation in the sundials/ directory, namely
CVODEModel.

14.3 Linear and nonlinear solvers

SAMRAI provides a number of classes for performing linear and nonlinear solves on AMR hierarchies.
Some of these classes are interfaces to external packages, and some implement solution methods
directly.

14.3.1 Linear solvers

HYPRE is an external library for solving linear systems in parallel. It is also used internally to some other
solver implementations such as the FAC solver and the CellPoissonHypreSolver.

FACPreconditioner is an implementation of the FAC iterative solution procedure for a solution of a linear
system over an AMR hierarchy. This class uses the FACOperatorStrategy interface, for which users must
implement a number of pure virtual methods. See FACOperatorStrategy.h for details.
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14.3.2 Nonlinear Solvers

Sundials is an external suite of tools for solving nonlinear and differential/algebraic systems. CVODE, a
package for integration of systems of ODEs, was already mentioned in the Section 14.1.1. SAMRAI also
provides wrappers for the KINSOL package, for solving nonlinear algebraic systems, through the class
KINSOLSolver. The user must supply implementations for the interface KINSOLAbstractFunctions.
SundialsAbstractVector is an interface that allows the user to provide custom vector kernel operations.
See the associated header files for details.

PETSc is a more general scientific computation toolkit for which SAMRAI provides an interface for a user-
supplied vector class that can be used with the PETSc solver framework. In addition, SAMRAI provides
PETSc_SAMRAIVectorReal, which is an implementation of PETScAbstractVectorReal which wraps a
SAMRAIVectorReal, which allows a collection of real-valued patch data types to be manipulated as
though they are all part of a single vector.

14.4 Basic usage examples

The linear and nonlinear solver facilities are best understood by studying small but functional examples,
which can be found in the following locations:

Solver Package Location of Example Code
HYPRE test/hypre

CVODE test/sundials

KINSOL test/nonlinear

PETSc vectors test/vector

PETSc solvers test/nonlinear
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15 Multiblock meshes

SAMRAI allows for the problem domain to be constructed as a multiblock mesh, with the mesh being
composed of a number of logically rectangular blocks that when combined may not be logically
rectangular on the whole.

Figure 12: Multiblock meshes may have blocks that meet at singularity points (or lines in 3D), where nodes are surrounded
by more or fewer cells than in a normal rectangular mesh.

15.1 Key concepts

The blocks of a multiblock mesh are each assigned an integer ID, ordered from 0 to N-1, with N being
the number of blocks. Blocks that touch each other in any way are considered neighbors, and data can
be communicated between neighbors across block boundaries. Each block has its own index space and
its own alignment of its coordinate axes, while the Transformation class can be used to map between
the index spaces of neighboring blocks.

Singularity points or lines must be specifically identified in the input that describes the multiblock mesh.

In a multiblock hierarchy, a PatchLevel can consist of Patches that lie on one or more blocks. The
coarsest level will cover the entire multiblock domain, while finer levels may have patches on any
number of blocks. The interior of each Patch must be fully inside one block, but Patches that touch
block boundaries may have ghost regions that overlap the index space of another block.

15.2 SAMRAI classes used in multiblock applications

The same SAMRAI classes that are used to create a single-block application contain the internal
capabilities to also work on multiblock applications. So there is little to no difference in the usage of
classes such as PatchHierarchy, RefineSchedule, GriddingAlgorithm, or most of the other classes detailed
earlier in this document. In this section we consider some classes and concepts that a user will likely
encounter specifically when working with a multiblock mesh.
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BaseGridGeometry and GridGeometry — In addition to the grid geometry functionality described earlier
BaseGridGeometry holds all of the metadata that describes the block structure of the multiblock mesh,
and provides interfaces for users to retrieve specific information about that structure. As
BaseGridGeometry is an abstract base class, geom::GridGeometry is a concrete implementation
available to be used as a grid geometry for a multiblock application. geom::GridGeometry is a general
implementation of a grid geometry that manages an index space without being tied to a specific type of
physical coordinate coordinate system. For a specific problem, the user provides the description of the
coarse-level multiblock mesh in the grid geometry input.

BaseGridGeometry::Neighbor — A nested struct defined within BaseGridGeometry, Neighbor holds the
data describing the relationship between two neighboring blocks.

Blockld — A class used to identify the block number for a block within the multiblock mesh. This class
exists for type safety instead of a native integer type. Blockld can be used to identify a block as a whole,
and it can also be used to associate an object with the block where it is located. For example, each Box
holds a Blockld, which indicates that it is located on a specific block, and that its indices are defined in
terms of the index space of that block.

Transformation — The Transformation class can be used for mapping between the index spaces of
neighboring blocks. It is mainly used to operate on a Box by transforming a Box from one block’s index
space to another’s. When transformed, a Box represents the same location on the mesh as before, but
its Blockld is changed and its high and low indices are defined in terms of the index space associated
with the new Blockld.

SingularityPatchStrategy — Usually applications need to do something problem-specific to handle the
filling of ghost data around multiblock singularities. SingularityPatchStrategy contains a pure virtual
interface called fillSingularityBoundaryConditions that will be called from RefineSchedule during the
filling of data, where the user code can implement whatever needs to be done at those ghost regions. It
is recommended that the same class that inherits from RefinePatchStrategy also inherit from
SingularityPatchStrategy.

15.3 Defining a multiblock mesh

The multiblock mesh for a particular problem must be defined via the input for GridGeometry. The
required input consists of 4 components: The number of blocks, boxes describing the index space of
each block, descriptions of the neighbor relationship between all pairs of neighboring blocks, and the
description of any singularity points or lines. A document describing the needed input in greater detail
is provided at docs/userdocs/Multiblock.pdf inthe SAMRAI distribution.
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16 Boundary boxes and CoarseFineBoundary

SAMRAI can compute level boundaries and provides facilities for an application to access this data.

16.1 Key concepts

Applications often require the boundaries of a PatchLevel to perform special operations such as setting
physical boundary conditions. SAMRAI represents level and patch boundaries with thin (one-cell wide)
boxes lying just outside the boundary. Physical boundaries are boundaries that coincide with physical
(not periodic) domain boundaries. They are automatically built for each PatchLevel. Coarse-fine

boundaries can be constructed as needed.

16.2 BoundaryBox

A BoundaryBox describes a portion of a boundary next to a patch and is associated with its patch. Each
box describes the extent, type (face, edge, node, etc.) and where it is in relation to its patch.

Each BoundaryBox has a Box to describe the extent of the portion of the boundary, an integer type
(face, edge, node, etc.) and an integer location id to indicate where it is in relation to the patch. In
directions parallel to the boundary, the Box extends the length of its portion of the boundary. In

directions perpendicular to the boundary, the Box is one-cell wide.

The next figure illustrates some BoundaryBoxes for a patch in a 2D PatchlLevel. The blue box represents
the level 0 and also the domain. Black boxes represent level 1 patches. BoundaryBoxes for the big
patch on level 1 are shown shaded. Red boxes represent physical boundaries. Green boxes are coarse-

fine boundaries (explained below).

In 2D, there are 2 types of boundary boxes. Edge boundaries lie against an edge of a PatchLevel. These
are the long boundary boxes in the figure. Node boundaries lie at convex corners of a PatchLevel.
These are the single-cell boxes in the figure. The integer boundary type is the codimension of the
boundary box. The figure shows one edge boundary box extending past the patch's corner. The reason
there is no node boundary here is that it is not a convex corner of the PatchLevel. (The presence of a
patch boundary does not change the type of the level boundary.) The extension past the corner of the
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patch is equal to the maximum ghost width of registered data.

The location index of a boundary box indicates where the boundary box is in relation to its patch, i.e.,
the upper or lower side of the patch in a given index direction. See BoundaryBox::getLocationIndex() for

details.

In 3D, there is one more BoundaryBox type: the face boundary type. Face type BoundaryBoxes lie
against the 2D face of a 3D box.

16.3 How to access boundaries

SAMRAI computes physical boundaries for all Patches in a PatchLevel. The boundaries at a patch is
available from a Patch's PatchGeometry, through the methods getNodeBoundaries(),

getEdgeBoundaries(), getFaceBoundaries(), or the more general getCodimensionBoundaries().

The following simple example shows how one might set some quantity's ghost cell data to zero at
physical edge boundaries:

void MyPatchStrategy::setPhysicalBoundaryConditions (
hier::Patché& patch,
const double fill time,
const hier::IntVector& ghost width to fill)

boost::shared ptr<pdat::CellData<double> > uval data(
patch.getPatchData (d uval data id, getDataContext()),
BOOST CAST TAG);

const boost::shared ptr<geom::CartesianPatchGeometry> pgeom
patch.getPatchGeometry (),
BOOST CAST TAG);

hier::IntVector ghost cells(uval data->getGhostCellWidth())

// Set boundary conditions for cells corresponding to patch edges.
const std::vector<hier::BoundaryBox>& edge bdry =
pgeom->getCodimensionBoundaries (Bdry: :EDGE2D) ;
for (int i = 0; i < static cast<int>(edge bdry.size()); i++) {
// Boundary box.
const hier::BoundaryBox &bbox = edge bdry[i];
// Utility for working with boundary boxes.
hier::BoundaryBoxUtil bbox util (bbox) ;
// Compute box corresponding to bbox, but with correct width.
hier::Box working box (bbox.getDim());
bbox util.stretchBoxToGhostWidth (working box,
ghost width to fill);
// Fill data in the working box.
mesh data->fill( 0.0, working box );
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16.4 Coarse-fine boundaries

Coarse-fine boundaries refer to the boundaries between a refined region and an un-refined region, as
shown by the green boxes in the above figure. Knowing these boundaries can simplify special
operations around them. Like physical boundaries, they are also represented by BoundaryBoxes. They
are not precomputed or held by the patches. The patches do not have inherent knowledge to compute
them. They can be computed by constructing a CoarseFineBoundary object. These boundaries are

accessed from this object using accessors of the same name.
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17 SAMRAI database interfaces

All data read or generated by SAMRAI conforms to the class tbox::Database. This data specifically
includes input parameters defining a problem, restart dumps, and plot dumps. Such data is generically
called a SAMRAI database. Class tbox::Database defines the interface to SAMRAI databases. In
particular it defines the types of data that may be read from or placed into a database. This data is quite
generic and application independent. The following types of data may be read from or placed into a
SAMRAI database:

* Databases

* Single bools, std::vectors of bools, and C-style arrays of bools.

* Single DatabaseBoxes, std::vectors of DatabaseBoxes, and C-style arrays of DatabaseBoxes.
* Single chars, std::vectors of chars, and C-style arrays of chars.

* Single complex values, std::vectors of complex values, and C-style arrays of complex values.
* Single double values, std::vectors of double values, and C-style arrays of double values.

* Single float values, std::vectors of float values, and C-style arrays of float values.

* Single integer values, std::vectors of integer values, and C-style arrays of integer values.

* Single std::strings, std::vectors of std::strings, and C-style arrays of std::strings.

* std::vectors of any object which is derived from class tbox::Serializable.

Each database entry is named. When an entry is created it is given a name unique to the database in
which it resides. Retrieval of an entry is achieved through its name. Retrieval methods that take a
default value are provided. These methods return the default value if the named entry does not exist.
Retrieval methods not taking a default value will result in an unrecoverable error if the named entry
does not exist.

17.1 Key concepts

Class tbox::Database only defines an interface. It describes WHAT a SAMRAI database may contain. It
does not say anything about HOW the database is implemented. The interface also does not say
anything about what the bools, ints, etc. in a database represent. That is entirely up to the entity
reading from or creating the database. Similarly, the interface does not say anything about the
organization of the database. That is also up to the entity reading or creating the database.

Another key point is that SAMRAI databases contain other SAMRAI databases. Therefore, SAMRAI
databases are hierarchical. This provides a way to group related pieces of data and to separate
unrelated pieces of data. A database embedded in another database is still a first class SAMRAI
database as defined by the tbox::Database interface. One important implication of this hierarchical
structure is that database entries with the same name may exist in separate yet embedded databases in
the hierarchy.
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17.2 Major classes and their associations

As stated above, class tbox::Database defines the interface to SAMRAI databases. It is an abstract base
class. Applications are free to implement their own database classes by inheriting from tbox::Database
and implementing its pure virtual methods. The SAMRAI library provides several database
implementations that applications may choose to use. These are:

* MemoryDatabase—a class that is used for storing a database in memory. This can be used to
create a database programmatically or to read an input file into memory. The typedef,
InputDatabase, is a synonym.

* HDFDatabase—a class that implements SAMRAI databases as HDF5 files.

* SiloDatabase—a class that implements SAMRAI databases as Silo files.

Parallel to this class hierarchy is the DatabaseFactory hierarchy. Class tbox::DatabaseFactory is an
abstract base class containing only one pure virtual method, allocate. It is used by tbox::RestartManager
to construct the restart database. Applications may register the DatabaseFactory of their choice with
the RestartManager in order to specify the type of restart database that they generate. An application
that implements its own Database class should also implement a corresponding DatabaseFactory class.
SAMRAI provides MemoryDatabaseFactory, HDFDatabaseFactory, and SiloDatabaseFactory.

The last class related to SAMRAI databases is tbox::DatabaseBox. It exists for two purposes. First, it
essentially creates a POD (plain old data) representation of class hier::Box. This is necessary for certain
database implementations such as HDFDatabase. Second, it breaks the dependency between the
tbox::Database and hier::Box classes.

17.3 Basic usage examples
The following is an example of how to read an input database:

// Construct an input (memory) database and read the input file into it.
boost::shared ptr<tbox::InputDatabase> input db(

new tbox::InputDatabase (“input db”));
tbox::InputManager: :getManager () ->parselnputFile (input filename, input db);

// Pass the database containing the TimerManager’s inputs to the TimerManager
// constructor.
tbox::TimerManager: :createManager (input db->getDatabase (“TimerManager”)) ;

// Get the database containing information read by the main program and read

// parameters from it.

boost::shared ptr<tbox::Database> main db (input db->getDatabase (“Main”));

const tbox::Dimension dim(
static_cast<unsigned short>(main db->getInteger (“dim”)));

string base name = “unnamed”;

base name = main db->getStringWithDefault (“base name”, base name);

const string log file name = base name + “.log”;
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bool log all nodes = false;
log _all nodes = main db->getBoolWithDefault (“log all nodes”, log all nodes);
if (log _all nodes) {
tbox::PIO::1ogAllNodes (log file name);
}
else {
tbox::PIO::1logOnlyNodeZero (log file name);

// Construct various classes used by the application by passing the database
// containing each class’ input parameters to its constructor.
boost::shared ptr<geom::CartesianGridGeometry> grid geom(
new geom: :CartesianGridGeometry (
dim,
“CartesianGeometry”,
input db->getDatabase (“CartesianGeometry”))) ;

The following is an example of how a class would put its state into a restart database via the
putToRestart method. Note that this code is independent of the specific implementation of restart_db.

voild Euler::putToRestart (
const boost::shared ptr<tbox::Database>& restart db) const

restart db->putDouble (“d gamma”, d gamma) ;
restart db->putString(“d riemann solve”, d riemann solve);
restart db->putlnteger (“d godunov_order”, d godunov_order);
restart db->putString(“d corner transport”, d corner transport);
restart db->putlntegerArray(“d nghosts”, &d nghosts[0], d dim.getValue());
restart db->putlntegerArray(“d fluxghosts”,
&d_fluxghosts[0],
d dim.getValue());

The following is an example of how a class would read its input parameters from a restart database via
the getFromRestart method. Note that this code must agree completely with the corresponding
putToRestart().

void Euler::getFromRestart ()
{
boost::shared ptr<tbox::Database> root db(
tbox::RestartManager: :getManager () ->getRootDatabase () ) ;

if (!root db->isDatabase(d object name)) {
TBOX ERROR (“"Restart database corresponding to ™
<< d _object name << ™ not found in restart file.” << endl);
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boost::shared ptr<tbox::Database> db(root db->getDatabase(d object name));

d gamma = db->getDouble (“d gamma”) ;
d riemann solve = db->getString(“d riemann solve”);
d godunov_order = db->getlInteger (“d godunov_order”);
d corner transport = db->getString(“d corner transport”);
db->getIntegerArray(“d nghosts”, &d nghosts[0], d dim.getValue());
db->getIntegerArray (“d fluxghosts”,

&d_fluxghosts[0],

d dim.getValue());
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18 Input and restart

Problems may be run either from their beginning or from some time step resulting from an earlier run.
In either case it is necessary for SAMRAI to obtain information about the problem. When run from the
beginning, the problem is entirely defined by an input database that must be supplied to SAMRAI.
When run from a time step of an earlier run it is necessary for the earlier run to have produced a restart
database defining the state of the problem. This restart database must then be supplied to SAMRAI
along with an input database.

Each of SAMRALI’s classes defines the parameters that it needs. Some of these parameters are required
to be supplied. For others, defaults exist so these parameters need not be supplied. When a problem is
initially run, the input database must define all required parameters for the SAMRAI classes relevant to
the problem. The input database must also define any parameters with defaults that the user wishes to
override. When run from a previously generated time step it is expected that the restart database will
hold these parameters.

SAMRALI’s classes all describe their parameters in their header file doxygen comments. This information
may be either read directly from the header files or, more conveniently, by browsing the SAMRAI

documentation of the classes of interest.

18.1 Key concepts

Any SAMRAI classes that have input parameters read their input and restart data when they are
constructed. These classes expect the restart database passed into their constructors to the database
for that class, not an enclosing database. The general pattern used by SAMRALI’s classes to read input
and restart data is to first check if the problem is being run from a restart database. If it is, then the
class reads its parameters from the restart database. Required parameters not existing in the restart
database will trigger an unrecoverable error. An input database is always required and parameters are
read from it only after the restart database is read (if it exists). This allows a user to modify parameters
on restart. Any given SAMRAI class will read parameters from an input database on restart only if the
“read_on_restart” parameter is set to true for that class. If the problem is being run from the beginning
then all required parameters must exist in the input database or an unrecoverable error will occur.

There are limitations on which restart parameters may be modified by an input database on restart. For
example, it is perfectly acceptable to change any parameter related to the GriddingAlgoroithm.

However, it is not allowed to change any parameter related to the GridGeometry.

There are two important classes related to input and restart—the InputManager and the
RestartManager. The InputManager parses the input database and constructs an in memory version of
it for use throughout an application. The RestartManager is the means by which restart databases are
not only accessed but also produced. The more important of these is the simple interface that it
provides to produce a restart database.
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Each SAMRAI or application class that needs to save its state to a restart database must be derived from
class tbox::Serializable and implement that base class’ pure virtual putToRestart method. Each instance
of these classes must register themselves with the RestartManager at the time of their construction.
This allows the RestartManager to produce a restart database by simply invoking each registered
object’s putToRestart. The application simply invokes the RestartManager’s writeRestartFile() method
and all required restart data is saved to the restart database.

18.2 Major classes and their associations

The major classes relating to input and restart have already been mentioned. They will be summarized
here for convenience:

* tbox::Serializable—the base class for any SAMRAI or application class which needs to save its
state to a restart database. It contains one pure virtual method, putToRestart, which each
derived class must implement.

* tbox::InputManager—a singleton class that provides convenience methods for reading input
databases. This class hides the details of opening the input database, constructing the parser,
and populating the in memory database with the input database’s values.

tbox::RestartManager—a singleton class that provides convenience methods for reading and
constructing restart databases.

18.3 Basic usage examples
In order to create an input database from an input file:

boost::shared ptr<tbox::InputDatabase> input db(
new tbox::InputDatabase (“input db”));
tbox::InputManager: :getManager () ->parselnputFile (input filename, input db);

In order to open and read from a restart database:

// Open restart database.
tbox::RestartManager* restart manager = tbox::RestartManager::getManager();
if (is_from restart) {
restart manager->openRestartFile (

restart read dirname,

restore num,

mpi.getSize());
}
// Now that the restart database has been opened classes may access it via
// the tbox::RestartManager::getRootDatabase () method.

// Close the restart database.
restart manager->closeRestartFile();

In order to generate a restart database at the current time step:
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tbox::RestartManager::getManager()->writeRestartFile(restart_write_dirname, iteration_num);

18.4 User-defined input and restart

User defined classes must implement the means to read input parameters from both input and restart
databases at the time of their construction. Users are free to choose how to do this. However it is
done, the code reading input parameters from input or restart must know which parameters are
required to exist in the database and which are optional. For optional parameters the code must know
what the default values are. If the class will read from restart then the code must implement a policy
covering which database parameter, input or restart, takes precedence.

Although you are free to choose your method of implementation, the pattern used by SAMRAI classes is
as follows for your reference:

* Each SAMRAI class reading input parameters from an input database has a method,
getFromInput(const boost::shared_ptr<tbox::Database>& input_db). This method knows which
parameters are required to exist, which are optional, and any applicable defaults.

* Ifthe class is also capable of reading from a restart database then getFromInput takes an
argument, bool is_from_restart, so that the method may take the appropriate action should the
user attempt to change a parameter read from the restart database that may not be modified.

* If the class is capable of reading from a restart database then it has the method,
getFromRestart().

* The two methods, getFromRestart and getFromInput are called from each constructor in the

following manner:
bool is from restart =
tbox::RestartManager: :getManager () ->isFromRestart () ;
if (is_from restart) ({
getFromRestart () ;
}

getFromInput (input db, is from restart);

In order for a class to write its input parameters to an restart database it must be derived from class
tbox::Serializable and implement that class’ pure virtual method putToRestart(). In each of the class’
constructors there must be a call to register the class with the RestartManager,
tbox::RestartManager::getManager()->registerRestartltem(object_name, this);. The putToRestart
method will decide how to organize this class’ input parameters in the restart database. In particular, it
will construct a database to hold these parameters in the root database. It is essential that putToRestart
be in complete agreement with the code that reads a restart database. In the case of SAMRAI classes
this is the method getFromRestart. In particular, there must be agreement on the name of the database
that will hold the parameters and the names and types of the parameters.

It is particularly easy to map hierarchical AMR class structures onto a SAMRAI database, which is
inherently hierarchical. Multiple instances of a class may be registered with the RestartManager
provided each instance has a different name. Classes may be written to a restart database either

66



SAMRAI Concepts and Software Design

through explicit registration with the RestartManager or via delegation. When using delegation, some
root class is registered for restart. This root class’ putToRestart method traverses its aggregated classes
and invokes methods in these classes to write to the restart database. The aggregated classes are not
registered with the RestartManager. This delegation may recur arbitrarily many times. It may be
instructive to look at how PatchData delegates to Patch, Patch delegates to PatchLevel, PatchLevel
delegates to PatchHierarchy, and PatchHierarchy is registered with the RestartManager. This
demonstrates not only delegation but also how classes that are hierarchically related are mapped to the
restart database.
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19 Visualization

The library provides support for writing data that is compatible with the Vislt visualization tool
(http://wci.llnl.gov/codes/visit). Use of this capability requires compiling with the HDFS5 library.

19.1 Key concepts

The VisltDataWriter directly supports the writing of cell and node data of double, float, and integer
types, for scalar, vector, or tensor quantities. It also supports the notion of “material” and “species”
data in cells. Material data is associated with multiple materials in a zone. These materials are
immiscible and occupy some fraction of the zone volume. Vislt has the capability to internally perform a
material interface reconstruction procedure to show the boundaries of materials across multi-material
zones using the material volume fraction information. Species data can be associated with any material,

Ill

whether there is one material or multiple materials in a zone. For example, a material “air” may have
species such as N, and O,. Each material may have its own set of species. Species are considered fully

mixed with other species in the same material.

Data that does not exist on the hierarchy directly as CellData or NodeData, but is derived from data on
the hierarchy by some calculation, can also be written. Such calculated data is called “derived” data and

involves use of the VisDerivedDataStrategy class.

In parallel, by default one file per processor will be written. However, it is possible to specify the
number of procs writing to each file when constructing the VisltDataWriter.

Note that all real data, whether of type double or float, is written out as float data. Therefore some
caution is advised regarding the limitations of double to float conversions that occur implicitly during the

writing process.

For data types which are not node or cell based, it is possible to process the data to be cell or node

centered so that it can be written out for Vislt.

While Cartesian grids are assumed by default, it is possible to write out non-Cartesian general structured
grids using an extra step where node coordinates are registered to be written out along with the field
data.

19.2 Major classes and their associations

VisltDataWriter is the main class that manages the data writing. This class can use implementations of
the interfaces defined by the VisDerivedDataStrategy and the VisMaterialsDataStrategy classes to
perform user-customizable operations associated with derived quantities and materials and species

specifications.

The basic procedure for use of the classes is to create the VisltDataWriter object, register plot quantities
using the registration calls registerPlotQuantity() and/or registerDerivedPlotQuantity(), and then
perform the write by calling writePlotData().
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The Euler application example demonstrates the basic usage pattern. First, in main.C, the
VisltDataWriter object is created. Then in Euler.C, in the registerModelVariables() method, the plot
guantities are registered. Two derived quantities, total energy and momentum, are also registered.
Note that the Euler class derives from VisDerivedDataStrategy, so that it can implement the required
method to compute the derived quantities, namely packDerivedDatalntoDoubleBuffer(), which takes a
string argument to specify which variable is to be written upon callback. Finally, the method
writePlotData() is invoked on the VisltDataWriter to write out the current state of the hierarchy. This
occurs in the main simulation loop in main.C.

19.3 Writing multi-material and species data

II’

The concepts of “multi-material” and “species” information for zonal quantities are supported. In a
multi-material zone, the components are considered spatially distinct and confined to a specific fraction
of the zone’s volume. By contrast, species data implies the components are well mixed, and are

specified by a given fraction of the zone’s mass.

An example demonstrating the writing of multi-material data can be found in the
source/tests/viz/VisMaterials directory. There are two formats for writing this data, the sparse format
and the non-sparse format. This choice is made by either registering the variable names to
registerMaterialNames() or via registerSparseMaterialNames(). You must choose one format or the
other; they cannot be intermingled. Depending on which of these two methods is called, the interface
appu::VisMaterialsDataStrategy must be implemented via either the
packMaterialFractionsintoDoubleBuffer() method or the packMaterialFractionsintoSparseBuffers()
method. The method packMaterialFractionsintoDoubleBuffer() will be called for each material;
packMaterialFractionsintoSparseBuffers() will be called only once to handle all materials. Refer to the

example for details on how to implement these methods to provide the required information.

If there are multiple species for a given material, use registerSpeciesNames() after
registerMaterialNames(), and implement the method packSpeciesFractionsintoDoubleBuffer().

19.4 Writing derived data

Sometimes it can be desirable to write data for visualization which is not directly associated with a
SAMRAI PatchData component, but is derived from one or more PatchData components. A simple
example of this might be the writing of momentum data in a simulation which stores densities and
energies rather than momenta.

To write derived data, a user must do two things. First, subclass appu::VisDerivedDataStrategy in order
to provide an implementation for packDerivedDatalntoDoubleBuffer(). This method provides an
allocated buffer, into which the user must write his derived data. Then, this method is linked to a plot
guantity through the VisltDataWriter method registerDerivedPlotQuantity().

An example of this can be found in source/test/applications/Euler.C, which contains both the
registration call and the implementation of packDerivedDatalntoDoubleBuffer().
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